
Modernizing Agricultural Practice using Internet of Things

MAPIoT Summer School in Norway
24.07.2022 – 07.08.2022

Melsom High School, Sandefjord
organized by University of South-Eastern Norway

AI (neural networks), GA (genetic algorithms)
& Fuzzy Rules

– applied in Modelling, Control, Predicting and Managing of processes
from Agriculture and Food Engineering domains –

Professor Adrian FLOREA, PhD

Lucian Blaga University of Sibiu

adrian.florea@ulbsibiu.ro

HPI Knowledge Transfer Institute at ULBS
http://centers.ulbsibiu.ro/itchpiulbs/en/

1) The digital materials do not reflect the views of Financial Mechanism Office (FMO),

and they do not purport to be representative of the countries, regions and themes they

illustrate. The use of the materials does not imply endorsement by the FMO, the Donor

States, the Beneficiary States, or any other stakeholder of the EEA and Norway Grants.

The FMO is not liable for any law infringements by third parties in the context of the

operation and use of the media library.

mailto:adrian.florea@ulbsibiu.ro
http://centers.ulbsibiu.ro/itchpiulbs/en/
http://centers.ulbsibiu.ro/itchpiulbs/en/

MAPIoT Motivation

Societal Challenges
• Food waste (1/3 of produced food is lost/wasted every year)

• Population growth, industrialization and transition to cities => limitation of

resources (water, energy), weather uncertainty and climate change

• Inefficiency in planting, harvesting, feeding, monitoring, water use

• In the agricultural sector, there are significant disparities between EU countries

• Agriculture is now moving into the information age, where data are collected

and analysed to improve both production and quality

• Technological gap, lack of digitalization (digital technologies and Internet

connectivity)

• Need for Knowledge Transfer of IT in Agriculture and Food processing /

security domains

Technical Challenges

MAPIoT Motivation

Proposed Solutions

• April 2019, EU member states signed the declaration of cooperation on “A

smart and sustainable digital future for European agriculture and rural

areas”

• Investment in education, scientific research, innovation, and

infrastructure

• Waste recycling, more responsible consumption

• Internet of Things (IoT) plays an essential role in innovative

developments

• Introducing in Agriculture / Food Engineering domains automation and

robotics, smart drones, IoT systems, or new methods for processes

monitoring, control or prediction using algorithms of computer vision,

Artificial Intelligence (AI), Genetic Algorithms (GA) and knowledge-

based systems (Fuzzy Rules) as sustainable software applications

IoT in agriculture: examples

Applying AI in Modelling, Control, Predicting and Managing
of processes from Agriculture and Food Engineering domains

Solutions

1. Using neural networks (NN):

• to obtain indirect information about the state variables in an alcoholic

fermentation process

• to detect fruit / plant diseases & nutrient deficiency in very initial stage

based on image processing and pattern matching

• to identify ripe vegetables and fruits by analysing shape and colour -->

crop growth and harvesting optimization

• forecasting of production in agriculture on the basis of a wide range of

independent variables, caused by unexpected crisis (war, climate changes),

lack of water, population growth

• if we can predict the probability of a specific product for food recall,

this will help food producers to improve food safety & reduce food waste

Using NN to detect fruit / plant diseases & nutrient deficiency in very

initial stage based on image processing and pattern matching

Normal (health) / Blotch / Scab / Rotten Apple

Robot able to harvest tomatoes

• Combine Computer Vision

with Neural Networks for

shape and colour prediction to

identify the right moment of

harvesting

Forecasting of production in agriculture on the basis of a wide range of

independent variables, caused by unexpected crisis (war, climate changes),

lack of water, population growth: customized Artificial Neural Network for

Crop Yield Prediction

Customized Artificial Neural Network for Crop Yield Prediction

• Biomass (kgha-1) is the accumulated energy in plants

• ESW (mm) is the extractable soil water

• NO3 (kgha-1) is nitrogen content present in soil

• Rain (mm) is amount of rainfall since sowing

• Transpiration (mm) is the amount of water evaporated from the leaf

• Soil evaporation (mm) is the amount of water evaporated from soil

• Historic wheat yield (kgha-1) from previous period

The parameters considered for

wheat yield prediction:

Applying AI in Modelling, Control, Predicting and Managing
of processes from Agriculture and Food Engineering domains

Solutions
2. Using Genetic Algorithms (GA):

• Optimization:

• of planning the harvesting

• Automatic design space exploration

• Simulation:

• Identification of natural resource sets for maximizing regional diversity

and maintaining long-term biodiversity

• Simulation based optimization in computer architectures, maintenance

processes

• Modeling:

• Global climate modelling.

• Train the Neural Networks. Generating initial weights

Problem type 1: Optimization

We have a model of our system and seek inputs that give us a specified

goal!

• Optimization of planning the harvesting according to the area and

the number of harvesting fields, the number of harvesting machines

(combines), the number of drivers, the number of warehouses and the

quantity that fits in the warehouses to reduce both the working time

and the fuel (multi-objective optimization problem)

• Optimization: Automatic design space exploration

Problem types 2: Modelling

We have corresponding sets of inputs & outputs and seek model that

delivers correct output for every known input!

Modeling:

• Global climate modelling, results are more precise if not only

the atmosphere and the oceans, but also the rainforests, deserts

and cities are modelled.

• Train the Neural Networks. Generating initial weights

Problem type 3: Simulation

We have a given model and wish to know the outputs that arise under

different input conditions!

Simulation:

• Identification of natural resource sets for maximizing regional

diversity and maintaining long-term biodiversity

• Simulation based optimization in computer architectures,

maintenance processes

Applying AI in Modelling, Control, Predicting and Managing
of processes from Agriculture and Food Engineering domains

Training the Neural Networks initial weights
http://193.226.29.27/WineFermentation/

http://193.226.29.27/WineFermentation/
http://193.226.29.27/WineFermentation/

Applying AI in Modelling, Control, Predicting and Managing
of processes from Agriculture and Food Engineering domains

Solutions

3. Using Fuzzy Rules (FR) for modeling of imprecise concepts:

• To automate and control the irrigation process

• To detect the fermentation phase

• To reduce the design space of parameters and improve the quality of

solutions

Fuzzy logic are based on fuzzy set theory developed by Lotfi Zadeh

since 1965.

Irrigation system
FUZZY LOGIC SYSTEM: Variables

Soil Moisture {DRY, MODERATE, WET}

Air Humidity {LOW, MODERATE, HIGH}

Light Intensity {DARK, MODERATE, BRIGHT}

⦿ are represented in percentage with values in [0, 100] interval

Air Temperature {COLD, MODERATE, HOT }

⦿ is represented in Celsius degrees in [-30, 40] interval.

Four inputs / Each has defined 3 membership functions

One output:

Irrigation Time {NONE, SHORT, MEDIUM, LONG, VERY LONG}

⦿ The output is calculated with the centroid defuzzification

method.

Irrigation system SINK:
MANDAMI INFERENCE FUZZY LOGIC SYSTEM (1)

R1: IF (soil_moisture IS wet) AND (air_temperature IS cold) AND (air_humidity IS high) AND

(light_intensity IS bright) THEN (irrigation_time IS none)

R2: IF (soil_moisture IS dry) AND (air_temperature IS moderate) AND (air_humidity IS low)

AND (light_intensity IS moderate) THEN (irrigation_time IS very_long)

The rules were chosen on nursery managers’ experience.

Disadvantage: We need to define 3^4=81 rules.

Irrigation system SINK:
MANDAMI INFERENCE FUZZY LOGIC SYSTEM (2)

Rules of FLC 1

Solution:

Cascaded rules =>

the number of rules

decreases, the

performance

increases and it is

easier to define them

Neural Networks (NN)

• Short history

• AI: domain affiliation

• What are NN? Advantages. Challenges

• Types of Neural Networks

• Structure of an artificial neuron

• Activation functions

• Simple perceptron and Multi-Layer Perceptron. Constraints

• Learning Mechanism: Backpropagation

• Source code examples: MATLAB and C#
o Creating the network

o Selection of activation function

o Metrics

o Training

• Application & Results

History of Neural Networks (I)

• The idea of “a machine that thinks” can be traced to the Ancient Greeks.

• Next, focus on the key events that led to the evolution of thinking around

neural networks:

• 1943: Warren S. McCulloch and Walter Pitts published “A logical

calculus of the ideas immanent in nervous activity”. This research

sought to understand how the human brain could produce complex

patterns through connected brain cells, or neurons. One of the main

resulting ideas was the comparison of neurons with a binary

threshold to Boolean logic (0/1 or true/false statements).

• 1958: Frank Rosenblatt is credited with the development of the

perceptron - “The Perceptron: A Probabilistic Model for Information

Storage and Organization in the Brain”. He takes McCulloch and Pitt’s

work a step further by introducing weights to the equation.

Leveraging an IBM 704, Rosenblatt was able to get a computer to

learn how to distinguish cards marked on the left vs. cards marked

on the right.

https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://www.cs.cmu.edu/~./epxing/Class/10715/reading/McCulloch.and.Pitts.pdf
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519
https://doi.apa.org/doiLanding?doi=10.1037/h0042519

History of Neural Networks (II)

• 1969: Marvin Minsky and Seymour Papert have analysed the

learning possibilities of the perceptron and reached rather sceptical

conclusions, proving the impossibility for the single-layer

perceptron to solve simple problems such as learning the XOR

function (a function that is not linearly separable).

• 1974: While numerous researchers contributed to the idea of

backpropagation, Paul Werbos was the first person in the US to

note its application within neural networks within his PhD thesis.

• 1989: Yann LeCun published a paper illustrating how the use of

constraints in backpropagation and its integration into the neural

network architecture can be used to train algorithms. This

research successfully leveraged a neural network to recognize hand-

written zip code digits provided by the U.S. Postal Service.

Neural Networks: What are?

• Neural networks try to simulate the neurophysiological structure of

the human brain.

• Their name and structure are inspired by the human brain, mimicking

the way that biological neurons signal to one another.
o The cortex is composed of a large number of interconnected biological cells

called neurons. Each neuron receives signals from the neurons connected to

it through the dendrites and conveys a signal using the axon.

• NNs allow computer programs to recognize patterns and solve

common problems.

• Also known as artificial neural networks (ANNs) or simulated neural

networks (SNNs), are a subset of machine learning and are at the

heart of deep learning algorithms.

Types of Neural Networks

1. From a purpose point of view, NNs can be viewed as part of the larger

domain of pattern recognition and Artificial Intelligence by the necessity

of learning (supervised vs. not-supervised).

2. From the point of view of the method applied, NNs fall within the parallel

distributed processing domain.

3. The topological structure of the neurons:

 single-layer networks

 multilayer networks

4. The direction in which the signals flow:

 feed-forward networks

 feedback networks

There are several types of artificial NNs classified according to different

factors:

The biological and the artificial neuron

Images from “A biological and an artificial neuron”

(via https://www.quora.com/What-is-the-differences-between-artificial-

neural-network-computer-science-and-biological-neural-network)

There are between 86 to 100 billion interconnected neurons by synapses.

Active – if the information entering

the neuron exceeds a certain

stimulation threshold

Pasive – otherwise

Biological NN Artificial NN

Cell body Network node

Dendrites Inputs in NN

Axon Output of NN

Activation Processing

Synapses Weighted links

https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network
https://www.quora.com/What-is-the-differences-between-artificial-neural-network-computer-science-and-biological-neural-network

Mathematical model of an artificial neuron

Types of Activation Functions

• Hyperbolic tangent function

• Sigmoid function

𝑓 𝑥 =
1

1 + 𝑒−𝑥

• ReLU (rectified linear unit) function

• Softmax function

𝑓 𝑥 =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

𝑓 𝑥 = max 0, 𝑥

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑧𝑖 =
ex p(𝑧𝑖

 𝑧𝑗𝑗

The architecture of a generic multilayer neural network with
two hidden layers – feed forward

The architecture of a generic multilayer neural network with
two hidden layers – feedback (recurrent)

Neural Networks (NN)

• Simple perceptron and Multi-Layer Perceptron. Constraints

• Learning Mechanism: Backpropagation

• Source code examples: Matlab and C#
o Creating the network

o Selection of activation function

o Metrics

o Training

• Application & Results
o Florea, A., Sipos, A., & Stoisor, M. C. (2022). Applying AI Tools for

Modeling, Predicting and Managing the White Wine Fermentation

Process. Fermentation, 8(4), 137.

http://193.226.29.27/WineFermentation/

USER INTERFACE

1st approach: NN implementation in MATLAB
% ******* CREATE NETWORK ***********************

% create vector dimensiune retea

 dimensiune_retea = [];

 for i = 1:nr_straturiAscunse

 dimensiune_retea = [dimensiune_retea nr_neuroni];

 end

 network = newff(input_antrenareRetea,target_antrenareRetea, dimensiune_retea);

%******* TRAIN NETWORK CONFIG ************************

% network.trainFcn = 'traingdx'; Gradient descent with momentum and adaptive learning rate BP

%SET THE TRAINING PARAMETERS

network.trainparam.epochs = nr_iteratii;

% TRAIN THE NETWORK

 trained_network = train(network,input_antrenareRetea,target_antrenareRetea);

%****COMPUTING AND PRINTING THE ERROR *****

 output_antrenareRetea = trained_network(input_antrenareRetea);

 eroare_antrenare = 0;

 for i = 1:length(output_antrenareRetea)

 eroare_antrenare = eroare_antrenare + ((output_antrenareRetea(i) - target_antrenareRetea(i))^2)

 end

 set(handles.edit_EroareAntrenare, 'String', num2str(eroare_antrenare/length(output_antrenareRetea)));

2nd approach: NN class members and methods in C#

Application & Experiment organization
The application development stages

consisted of:

• The back-end component implements

the functionality of the application the

configuration of the NN and its

prediction.

• The front-end component contains all

the design and presentation features of

the application (ASP.NET, HTML 5.0,

CSS and JavaScript).

Through this implementation mode, the

application is available remotely,

facilitating its operation without the

need to be near the bioreactor.

Fermentation process parameters

NN training and test

• Metrics

o At the end of the training phase, the errors obtained from training

data are calculated with the following mean square error formula

(MSE):

where M is the pairs number of the input–output used in training.

• Training (75% of the data) & Testing phases (rest of 25% of the data)

𝐸 =
 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑆𝑐𝑜𝑝𝑒𝑉𝑎𝑙𝑢𝑒 2𝑀

𝑖=1

𝑀

Multi-Layer Perceptron (MLP)
Learning Mechanism: Backpropagation (BP)

• Is used in feed-forward networks.

• BP comprises two steps:

 The first step (forward) is where information is passed from

input to output, followed by a step from output to input. The

forward step propagates the input vector to the first level of the

network; the outputs of this level produce a new vector that will

be the input for the next level until it reaches the last level, where

the outputs are the network outputs.

 The second step (backward) is similar to the forward step, except

that errors are propagated backward through the network to

cause the weights to adjust. Based on gradient descent for weight

adjustment, the BP algorithm uses the chain rule to compute the

gradient of the error for each unit with respect to its weights.

Multi-Layer Perceptron (MLP)

M = N+1

neurons

P = 3

neurons

N = k*3

neurons

Hidden

layer

Output

layer

Input

layer

L1

Lk

I1

Ik

C1

Ck

 L (last value predictor)

 I (stride predictor)

 C (context-based predictor)

• Learning Mechanism: Backpropagation

• Feasibility issues. Constraints

o Neurons from the same

layer are not connected

Multi-Layer Perceptron (MLP)
• Learning Mechanism: Backpropagation

Multi-Layer Perceptron (MLP)
• Learning Mechanism: Levenberg-Marquardt (LM)

The Levenberg-Marquardt algorithm is an iterative optimizational

technique that uses aspects of the gradient descent and Gauss-Newton

method and is fast in practice, as we demonstrated in our experiments.

No. of Iterations
No. of Hidden

Layers

No. of Neurons on

Hidden Layers

Average Error

Levenberg-Marquardt

Algorithm

Backpropagation

Algorithm

1500 1 5 3.5498 5.6236

1500 1 6 2.2282 5.4599

1500 1 7 1.6872 4.5100

1500 1 8 1.7170 3.9243

1500 1 9 1.3018 4.6077

1500 1 10 1.9558 5.9983

1500 1 11 2.0424 3.8234

1500 1 12 0.9954 4.0962

MATLAB implementation: Simulation results obtained with the original data using
the Levenberg-Marquardt and the Backpropagation algorithms respectively.

net.trainFcn = 'trainlm' – in MATLAB

[trainedNet,tr] = train(net,...)

Neural Networks Results (I)
Random Initialization vs. GA

Initialization of NN weights

We achieved better results with

the neural network pre-trained

with the genetic algorithm, with a

testing error of 0.03 compared to

0.045 in the case of the pseudo-

random Xavier initialization.

Neural Networks Results (II)
Incorporating the pH and the

released CO2 in the prediction

process

There was an increase in the

prediction accuracy once the

additional information about the

pH and the released carbon

dioxide was incorporated, leading

to the conclusion that a larger

amount of data positively influences

the performance of the NN.

Neural Networks: Challenges

• The choice of alpha (learning rate) greatly influences the backpropagation

learning algorithm based on minimizing the mean square error. However, its

choice depends on the specifics of the problem.

• Although there is no universal method for choosing in a given problem,

it is recommended that it be subunit or possibly decreasing with increasing

iteration number. Usually the most convenient value is chosen after

laborious simulations.

• Difficult to customize Machine Learning models for specific food types or

recall types

• Are necessary complex Machine Learning models and large volumes of

data to ensure accurate predictions

• Time-consuming simulations and AI models training requiring days/weeks

to be performed

Genetic Algorithms (GA)
The most widely known type of Evolutionary Algorithms

• Quick overview

• Advantages of GA. Limitations of GA.

• Structure of a Genetic Algorithm (pseudocod)

• GA: Individual/Chromosome Representation

• GA: Fitness & parents selection

• Genetic operators: Recombination & Mutation

• GA: Survivor selection

• Application & Results

https://webspace.ulbsibiu.ro/adrian.florea/html/Planificari/EvolutionaryComputing/Planif_Evolu

tionaryComputing_ACS_2.pdf

https://webspace.ulbsibiu.ro/adrian.florea/html/Planificari/EvolutionaryComputing/Planif_EvolutionaryComputing_ACS_2.pdf
https://webspace.ulbsibiu.ro/adrian.florea/html/Planificari/EvolutionaryComputing/Planif_EvolutionaryComputing_ACS_2.pdf
https://webspace.ulbsibiu.ro/adrian.florea/html/Planificari/EvolutionaryComputing/Planif_EvolutionaryComputing_ACS_2.pdf

Evolutionary Algorithms Inspiration:
Mother Nature

1859

"It is not the strongest of the species that

survives, nor the most intelligent that survives.

It is the one that is the most adaptable to

change."

How survive ?

• Variation introduced into a
population

• Parental recombination

• Mutation

• Variations that provide a
selective advantage stick
around:

• elitist / generational

• Competition,

survival of the fittest

In Nature:

At the Molecular Level:

• It’s all about the DNA

• Heritable traits: genes

Variation introduced through parental

recombination and mutation

Variation introduced through parental

recombination and mutation

How survive ?

Variation Through Mutation

In nature:

• Environmental factors

• Radiation

• Oxidation

• Mistakes in replication

or repair

What is Evolutionary Computing /
Algorithms ?

• Evolutionary computing began by lifting ideas from biological

evolutionary theory into computer science, and continues to

look toward new biological research findings for inspiration.

• Darwin’s principle “Survival of the fittest” and „Natural

selection and genetic inheritance!” can be used as a starting

point in introducing evolutionary algorithms / computing.

• Although the history of evolutionary computing dates back to

the 1950s and 1960s, only within the last two decades have

evolutionary algorithms became practicable for solving real-

world problems on desktop computers.

EVOLUTION

Environment

Individual

Fitness

Population

Chromosome

Gene

The Main Evolutionary Computing Metaphor

PROBLEM SOLVING

Problem

Candidate Solution

Quality

Set of potential solutions

Encoding of potential solutions

Part of encoding

Quality  chance for seeding new solutions

Fitness  chances for survival and reproduction

Advantages of GA

• Parallelism

• Solution space is wider

• The problem has multi objective function

• Easily modified for different problems

• They require no knowledge or gradient information about

the response surface and only uses function evaluations

• They are resistant to becoming trapped in local optima

• They perform very well for large-scale optimization

problems

• Can be employed for a wide variety of optimization

problems

Limitations of GA

• The problem of identifying fitness function

• Definition of representation for the problem

• Premature convergence occurs

• Cannot easily incorporate problem specific information

• Not good at identifying local optima

• Needs to be coupled with a local search technique (memetic

algorithms)

• Have trouble finding the exact global optimum

• Require large number of response (fitness) function

evaluations

• Configuration is not straightforward

General Scheme of EAs

The generic structure of EAs

Pseudo-code for typical EA

1 – Select parents – stochastic

5 – Survival selection – deterministic

Genetic Algorithms (pseudocod)

 Procedure GA{

 t = 0;

 Initialize P(t);

 Evaluate P(t);

 While (Not Done)

 {

 Parents(t) = Select_Parents(P(t));

 Offspring(t) = Procreate(Parents(t));

 Evaluate(Offspring(t));

 P(t+1)= Select_Survivors(P(t),Offspring(t));

 t = t + 1;

 }

To solve a problem using a genetic algorithm is necessary to define a fitness function

(F) to evaluate the performance of each chromosome.

GA: Individual / Chromosome Representation

Representation - The most critical decision in any application, namely

that of deciding how best to represent a candidate solution of the

algorithm

• Binary encoding

• Permutation

• Integer encoding

• Real valued problems

Based on the representation – it depends the setting of genetic operators

and the computing of fitness function!

GA: Binary Representation
Binary Representation (knapsack problem object selection, loading

trucks, combinatorial problems, maximum/minimum, FPGA chip design)

The knapsack problem is a problem in combinatorial optimization: Given a

set of items, each with a weight and a value, determine the number of each

item to include in a collection so that the total weight is less than or equal

to a given limit and the total value is as large as possible.

It derives its name from the problem faced by someone who is constrained by a

fixed-size knapsack and must fill it with the most useful items.

A bitvector with an entry for each potential item, a 1 if in the

sack, a 0 if not

0 0 1 0 1 1 0 1 0 0

GA: Permutation representation
Permutation Representation (Traveling Salesman Problem / Vehicle

Routing Problem)

 Problem:

• Given n cities

• Find a complete tour with minimal length

 Encoding:

• Label the cities 1, 2, … , n

• One complete tour is one permutation (e.g.

for n =4 [1,2,3,4], [3,4,2,1] are OK)

 Search space is BIG:

 for 30 cities there are 30!  1032 possible tours

The 8 queens problem

Obvious mapping

GA: Integer Representation
Integer Representation (image processing parameters,

microarchitectural configuration)

public class PSATSimSolutionType: SolutionType {

 public override Variable[] CreateVariables(Problem problem)

 {

 var variables = new PSATSimVariable[problem.NumberOfVariables];

 variables[0] = new PSATSimVariable(1, 16, "Super-Scalar Factor");

variables[2] = new PSATSimVariable(1, 512, "Reorder entries", MutationType.Exponential);

variables[6] = new PSATSimVariable(1, 8, "Integer Execution Units");

…

}}

Extend bit-flipping mutation from binary representation to make random

choice (esp. categorical variables)

GA: Real values Representation
Real valued problems (continuous parameter optimisation, using a GA

for Neural Network training in order to increase prediction accuracy)

Each individual has a finite number of genes,

which in this case are represented by the linear

matrix of weights, where one weight of NN

corresponds to one gene.

GA: Mapping real values on bit strings

],[)2(
12

),...,(
1

0

1 yxa
xy

xaa j
L

j

jLLL 



 







GA: Parent Selection Methods
GA researchers have used a number of parent selection methods. Some of the

more popular methods are:

– Proportionate Selection (FPS or roulette wheel)

 individuals are assigned a probability of being selected based on their fitness

pi = fi / fj

 where pi is the probability that individual i will be selected, fi is the fitness of
individual i, and  fj represents the sum of all the fitnesses of the individuals with
the population.

– Rank based Selection (Linear, Exponential)

 Attempt to remove problems of FPS by basing selection probabilities on relative

rather than absolute fitness

This imposes a sorting overhead on the algorithm, but this is usually negligible

compared to the fitness evaluation time

– Tournament Selection

Two members are selected at random to compete against each other with only the

winner of the competition progressing to the next level of the tournament.

GA: Genetic Procreation Operators

• Genetic Algorithms typically use two types of operators:

– Crossover (Sexual Recombination), and

– Mutation (Asexual)

• Crossover is usually the primary operator with mutation serving

only as a mechanism to introduce diversity in the population.

• However, when designing a GA to solve a problem it is not

uncommon that one will have to develop unique crossover and

mutation operators that take advantage of the structure of the

chromosomes comprising the search space.

GA: Types of Crossover

• However, there are a number of crossover operators that have been

used on binary and real-coded GAs:

 Single-point Crossover

 n-point Crossover

 Uniform Crossover

 Half-uniform Crossover

• Crossover operators used on permutation representation of GAs:

 Order 1 crossover Crossover

 Partially matched Crossover

 Cycle Crossover

 Edge Crossover

GA: Alternative Mutation Operators

• Through mutation are introduced in the population individuals which

could not be generated by other mechanisms.

• Mutation operators used on binary and real-coded GAs:

 Strong Mutation

 Weak Mutation

 Single chromosome (individual) mutation

 Not uniform mutation

 Adaptive not-uniform mutation

• Mutation operators used on permutation representation of GAs:

 Insert Mutation

 Swap Mutation

 Inversion mutation

 Scramblemutation

GA: Crossover OR mutation?
 Decade long debate: which one is better / necessary / main-background

 Answer (at least, rather wide agreement):

– it depends on the problem, but

– in general, it is good to have both

– both have another role

– mutation-only-EA is possible, xover-only-EA would not work

 Achieving a balance between information exploitation and by the state-space

exploration to obtain new better solutions, is typical of all powerful optimization

methods.

 If the solutions obtained are exploited too much, then reaches a premature

convergence.

 On the other hand, if too much emphasis on exploration, it is possible that the

information already obtained is not used properly. Search time grows and

approaches that of random search methods.

GA: Crossover OR mutation? (cont’d)

Exploration: Discovering promising areas in the search space, i.e.

gaining information on the problem

Exploitation: Optimising within a promising area, i.e. using information

There is co-operation AND competition between them

• Crossover is explorative, it makes a big jump to an area somewhere

“in between” two (parent) areas

• Mutation is exploitative, it creates random small diversions, thereby

staying near (in the area of) the parent

An Example Run (Steady-State GA)

• This process of:

– Selecting two parents,

– Allowing them to create two offspring, and

– Immediately replacing the two worst individuals in the population

with the offspring

• Is repeated until a stopping criterion is reached

• Notice that on each cycle the steady-state GA will make two

function evaluations while a generational GA will make P (where

P is the population size) function evaluations.

• Therefore, you must be careful to count only function evaluations

when comparing generational GAs with steady-state GAs.

GA: Additional Properties

• Generation Gap: The fraction of the population that is replaced

each cycle. A generation gap of 1.0 means that the whole

population is replaced by the offspring. A generation gap of 0.02

(given a population size of 100) means two offsprings replace two

parents.

• Elitism: The fraction of the population that is guaranteed to

survive to the next cycle. An elitism rate of 0.98 (given a

population size of 100) means 98 parents survive and an elitism

rate of 0.02 means that only 2 parents survive.

Applying GA for training weights of NN

The fitness function used to evaluate each individual is the backpropagation

algorithm itself, while the fitness score is the output of this algorithm, the network

error that resulted after training the network for the specific number of epochs

selected by the user.

Bring diversity to population in GA
Uniform crossover, with 𝑃𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 probability

𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑛𝑒𝑤 = 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑜𝑙𝑑 ∗ 𝑒(1−𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑛𝑜 ∗𝐵𝑒𝑡𝑎

Uniform mutation with 𝑃𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 probability

Running WineFermentation and training NN with GA

PREDICTION TOOL

Fuzzy Systems (FS) & Fuzzy Rules (FR)

• Quick overview. Terminology: Input, output, membership functions

• Advantages of FS

• Fuzzy Rules: Fuzzification, Inference and Defuzzification

• Application: Irrigation system automate control / Wine fermentation

Advantages of Fuzzy Logic Systems (FLS)
Fuzzy Logic is a method of reasoning (a precise problem-solving

methodology) that resembles human reasoning applied in industrial process

control systems.

• The mathematical foundations of fuzzy reasoning are extremely

straightforward

• The flexibility of fuzzy logic allows you to change a FLS by simply adding or

deleting rules

• Robust setup - FLS help in dealing engineering uncertainties: are capable of

accepting distorted, noisy, imprecise input data

• FLS are simple to build and comprehend

• Fuzzy logic systems can be programmed in a situation when feedback sensors

stop working

• Large applicability: cement factories, steam turbines, trains and subways, water

purification, irrigation process, wine fermentation, power plants, prediction of

energy production / consumption, airplanes, autonomous driving and car

equipments (automatic transmision, braking system), household appliances, etc.

FR: Quick overview. Terminology
• Fuzzy logic are based on fuzzy set theory developed by Lotfi Zadeh since

1965. Classical sets can be described by a characteristic function. In the

classical theory of sets, the characteristic function associated of a set A, for a

given element x is 1 or 0 depending if x belongs or not to A, respectively.

• Crisp values – physical quantities that take real, precise, well-determined

values in a range

• Crisp rules have problems with uncertainty

• Fuzzy sets are supersets of crisp sets aimed for:

o Modeling of imprecise concepts like

 Age, Weight, Height, …

o Modeling of imprecise dependencies (rules):

 IF age IS young AND car-power IS high THEN risk IS high

o Representation of information extracted from inherently imprecise

data

https://www2.eecs.berkeley.edu/Faculty/Homepages/zadeh.html/
https://www2.eecs.berkeley.edu/Faculty/Homepages/zadeh.html/
https://www2.eecs.berkeley.edu/Faculty/Homepages/zadeh.html/
http://www.cs.berkeley.edu/~zadeh/

Crisp rules
• Consist of antecedents and consequents

• Each part of an antecedent is a logical expression

o e.g. A > 0.5, light is on

• Consequent will be asserted if antecedent is true

o IF (Presentation is Dull) AND (Voice is Monotone)

o THEN Lecture is boring

• Difficulties:

o Only one rule at a time allowed to fire

o A rule will either fire or not fire; Sequential firing of rules also is a

problem (ordering the rules to fire!)

o Crisp rules have problems with

uncertainty - representing concepts like

small, large, thin, wide

o Classical Crisp Sets can be described

by a characteristic function 

FR: Terminology. Linguistic variables and values
• Associating meaning (semantic) with fuzzy sets results in:

 Linguistic Variables: the (labeled!) domain of the fuzzy sets

 Linguistic Values: a (labeled!) collection of fuzzy sets on this domain

 Linguistic values are inherently context dependent!

• Examples:

Age: young, old

Size: small, medium, tall

Fuzzy Sets
• Supersets of crisp sets

• Items can belong to varying degrees:

 degrees of membership

 usually in [0,1]

• Fuzzy sets are defined in two ways:

 membership functions (MF, A) - return the degree of membership in a

fuzzy set (A in this case)
 Many different types in existence:

Gaussian, Triangular, Trapezoid, Singleton

 sets of ordered pairs (Crisp, Fuzzy) values

Fuzzy process flow (fuzzy inference process)

• Fuzzifier converts a clear input (crisp) to a fuzzy value based on gradual

membership function.

• Intelligence

• applies the fuzzy rules to infer fuzzy conclusions from fuzzy facts

• assigns fuzzy sets to outputs, determined by degree of support for rules

• aggregates the outputs of fuzzy rules based on classical fuzzy operators

• Defuzzifier converts the membership function of fuzzy output values to crisp output

values using Centre of Gravity or Mean of Maxima methods

Fuzzy Rules (FR): Construction & Examples

• FR - also have antecedents and consequents

• Both deal with partial truths

o Antecedents match fuzzy sets

o E.g. Restaurant tipping example, antecedent variables are (quality of

service, quality of food)

o Consequents assign fuzzy sets

o consequent variable is Tip

• Fuzzy rules can have weightings

o usually in [0, 1]

o based on importance of each rule

• Service (range 0-10) can be:

o Poor

o Good

o Excellent

Fuzzy Rules: Operations

• Classical Fuzzy Operators: Min/Max Norm

Fuzzy Rules: Operations

• Classical Fuzzy Operators: Product / Bounded-Sum

 )()),(1(max),(yxyx BABA  

Fuzzy Rules: 2 main categories of fuzzy intelligence

• Mandami inference systems (1975)

o It is logical

o It has wide dissemination

o It works well with human input

Rule: IF <Antecedent> THEN <Consequent>

 Antecedent: Conjunction of fuzzy memberships

 Consequent: Fuzzy Set

• Sugeno inference systems (Takagi, Sugeno & Kang, 1985)

o It has good computational efficiency

o It is compatible with linear techniques

o It functions well with adaptive and optimization techniques

o It has guaranteed the consistency of the output volume

o It lends itself well to mathematical analysis

Rule: IF x is A and y is B THEN z = f(x, y) => Crisp Function

Fuzzy Rules: Inference Example (1)

• Fuzzification of crisp inputs  Logical inference (via Min/Max - Norm)

 Defuzzification

Let’s consider two rules expressed in fuzzy logic:

R1: IF age IS young AND car-power IS high THEN risk IS high

R2: IF age IS normal AND car-power IS medium THEN risk IS medium

Fuzzy Rules: Inference Example (2)
• Step 1: Fuzzification of crisp inputs • Step 2: Inference (Min/Max-Norm)

According the R1 rule results the membership function related to output risk=high,

according AND rule’s, namely

According the R2 rule results the membership function related to output risk=medium,

according to the rule

Consequently, we are superpositioning the with Then, calculate the

center of gravity for the membership function resulted by superposition.

},min{ //1// bhighpowercarayoungageRhighrisk  

},min{ //2// bmediumpowercaranormalageRmediumrisk  

1// Rhighrisk 2// Rmediumrisk

Fuzzy Rules: Inference Example (3)
• Step 3: Defuzzification












x

j

jj

x

j

jjj

approx

x

xx

COG
max_

0

max_

0

)(

)(





Center of Gravity - COG

of objective membership

function (objective risk, in

this case) where is the

membership function

resulted after the processes

of fuzzy logical inferences.


 


dxx

dxxx
COG

)(

)(





)(x

Fuzzy Inference System: Summary

1. Determining a set of fuzzy rules

2. Fuzzifying the inputs using the input membership functions

3. Combining the fuzzified inputs according to the fuzzy rules to

establish a rule strength

4. Finding the consequence of the rule by combining the rule strength

and the output membership function (Mamdani FLS)

5. Combining the consequences to get an output distribution

6. Defuzzifying the output distribution

Automation rules for first level automation type

1_Rule:

IF (Biomass = small) AND ((alcohol=const.) OR (alcohol=small)) AND (substrate

concentration=const.) AND (last_phase=latent_phase)

THEN (new_phase=latent_phase)

DESCRIPTION: identify the latent phase in biomass developing

Automation rules – C# implementation

• https://de.mathworks.com/products/fuzzy-logic.html

• http://jfuzzylogic.sourceforge.net/html/example_fcl.html

https://de.mathworks.com/products/fuzzy-logic.html
https://de.mathworks.com/products/fuzzy-logic.html
https://de.mathworks.com/products/fuzzy-logic.html
https://de.mathworks.com/products/fuzzy-logic.html
http://jfuzzylogic.sourceforge.net/html/example_fcl.html
http://jfuzzylogic.sourceforge.net/html/example_fcl.html

Automation
Rules

Fermentation phase Latent
Exponenti

al growth
Decay

Number of examples 17 36 7

Time
Predicted

Alcohol

Expected

Alcohol

Alcohol

Phase

Predicted

Substrate

Expected

Alcohol

Alcohol

Phase

0 0.5924 0.2 latent 210.9708 210 latent

5 0.6736 0.2 latent 210.8072 210 latent

…

49 3.4505 3.1095
exp.

growth
196.1738 197.5316 exp. growth

50 4.2833 4.6204
exp.

growth
182.2209 188.6707 exp. growth

52 5.7213 6.2040
exp.

growth
178.8094 180.5961 exp. growth

…

191 79.2037 70.016 decay 15.7378 10.3751 decay

212 79.1773 70.016 decay 13.1312 8.1352 decay

MATLAB Neuro-fuzzy designer

Implementation of irrigation system fuzzy logic (1)
Used Simpful python library for implementation

1. Define fuzzy variables (name, membership functions, universe of discourse) and rules as

constants.

IRRIGATION_TIME_SET = {
 "irrigation_time": [
 {
 "none": [0, 0, 2]
 }, {
 "short": [0, 2, 4]
 } ...
],
 "uod": [0, 10]
}

FLC1_RULES = [
 "IF (soil_moisture IS dry) AND (air_temperature IS cold) THEN (irrigation_time IS long)",
 "IF (soil_moisture IS dry) AND (air_temperature IS moderate) THEN (irrigation_time IS very_long)",
 "IF (soil_moisture IS dry) AND (air_temperature IS hot) THEN (irrigation_time IS very_long)",
 "IF (soil_moisture IS moderate) AND (air_temperature IS cold) THEN (irrigation_time IS short)",
 "IF (soil_moisture IS moderate) AND (air_temperature IS moderate) THEN (irrigation_time IS medium)",
 "IF (soil_moisture IS moderate) AND (air_temperature IS hot) THEN (irrigation_time IS medium)",
 "IF (soil_moisture IS wet) THEN (irrigation_time IS none)"
]

2. Initialize the fuzzy systems

self.fs1 = FuzzySystem()
self.fs2 = FuzzySystem()
self.fs3 = FuzzySystem()

from simpful import *

Implemented a class with one method to

calculate the irrigation time based on the

environment variables.

Implementation of irrigation system fuzzy logic (2)

3.2. Add a variable into the fuzzy system

fs.add_linguistic_variable(set_name, LinguisticVariable(fuzzy_sets, universe_of_discourse = uod))

! Where set_name is the name of the variable, fuzzy_sets is defined in step 2.2 and uod is values interval.

3.3. Repeat with the other variables

4. Add the rules
self.fs1.add_rules(FLC1_RULES)

5. Calculate the output variable (irrigation time)
self.fs1.set_variable("soil_moisture", soil_moisture)
self.fs1.set_variable("air_temperature", air_temperature)
result = self.fs1.Mamdani_inference(["irrigation_time"])
irrigation_time = result["irrigation_time"]

! Where soil_moisture and air_temperature are numerical values which need to be fuzzified before calculating the irrigation time.

set = FuzzySet(function = Triangular_MF(a, b, c), term = name)
set = FuzzySet(function = Trapezoidal_MF(a, b, c, d), term = name)
…
fuzzy_sets.append(set)

3.1. Create fuzzy sets with terms and membership functions of each variable

! Where a, b, c, d are membership function points of a term from a configuration set. (E.g. a=0, b=0, c=2, name=“none”; for Irrigation Time Set)

Full source code: https://github.com/pdany1116/is-iot-sink

about:blank
about:blank
about:blank
about:blank
about:blank

AUTOMATION RULES

References

• Florea, A., Sipos, A., & Stoisor, M. C. (2022). Applying AI Tools for Modeling, Predicting

and Managing the White Wine Fermentation Process. Fermentation 2022, 8, 137.

• Sipos, A., Florea, A., Arsin, M., & Fiore, U. (2020). Using Neural Networks to Obtain

Indirect Information about the State Variables in an Alcoholic Fermentation Process.

Processes 2021, 9, 74.

• Gellert, A., Florea, A., Fiore, U., Zanetti, P., & Vintan, L. (2019). Performance and energy

optimisation in CPUs through fuzzy knowledge representation. Information Sciences, 476,

375-391.

• Berntzen, L., Florea, A., Molder, C., & Bouhmala, N. (2019). A strategy for drone traffic

planning dynamic flight-paths for drones in smart cities. In SMART 2019, The Eighth

International Conference on Smart Cities, Systems, Devices and Technologies.

• Spolaor S., Fuchs C., Cazzaniga P., Kaymak U., Besozzi D., Nobile M.S.: Simpful: a user-

friendly Python library for fuzzy logic, International Journal of Computational Intelligence

Systems, 13(1):1687–1698, 2020 DOI:10.2991/ijcis.d.201012.002

